• BIST 100

    9825,79%-1,79
  • DOLAR

    35,99% 0,42
  • EURO

    36,94% -0,73
  • GRAM ALTIN

    3249,63% 0,68
  • Ç. ALTIN

    5187,35% 0,80

Yapay zekâya ne kadar güvenebiliriz?

GÜNDEM 3.02.2025 19:34:43 0
Yapay zekâya ne kadar güvenebiliriz?

Yapay zekâ asistanınıza güvenmeden önce iki kez düşünmelisiniz zira veri tabanı zehirlenmesi asistanınızın çıktılarını önemli ölçüde hatta tehlikeli bir şekilde değiştirebilir.

Siber güvenlik şirketi ESET güvenlik, gizlilik ve güvenden ödün vermeden yapay zekânın potansiyelini nasıl ortaya çıkarabilirizi araştırdı, önerilerini paylaştı.

Sürekli ortaya çıkan sayısız güvenlik açığından da görebileceğimiz gibi modern teknoloji kusursuz olmaktan çok uzak. Tasarım açısından güvenli sistemler tasarlamak denenmiş ve doğrulanmış bir en iyi uygulama olsa da bunu yapmak kaynakları kullanıcı deneyimi (UX) tasarımı, performans optimizasyonu ve diğer çözümler ve hizmetlerle birlikte çalışabilirlik gibi diğer alanlardan uzaklaştırabilir.

Bu nedenle, güvenlik genellikle arka planda kalır ve yalnızca asgari uyumluluk gerekliliklerini yerine getirir. Bu değiş tokuş özellikle hassas veriler söz konusu olduğunda endişe verici hale gelir çünkü bu tür veriler kritiklikleriyle orantılı korumalar gerektirir. Günümüzde, yetersiz güvenlik önlemlerinin riskleri, verilerin işlevselliklerinin temelini oluşturduğu yapay zekâ ve makine öğrenimi (AI/ML) sistemlerinde giderek daha belirgin hale gelmektedir.

Veri zehirlenmesi nedir?

Yapay zekâ ve makine öğrenimi modelleri, denetimli ve denetimsiz öğrenme yoluyla sürekli olarak güncellenen temel eğitim veri kümeleri üzerine inşa edilir. Makine öğrenimi yapay zekânın gelişmesinde önemli rol oynar. Makine öğrenimi sayesinde gerçekleşen derin öğrenme, diğer etkenlerle birlikte yapay zekânın yeteneklerini ilerletmesini mümkün kılar. Veriler ne kadar çeşitli ve güvenilir olursa modelin çıktıları da o kadar doğru ve kullanışlı olacaktır. Bu nedenle, eğitim sırasında bu modellerin büyük miktarda veriye erişmesi gerekir. Öte yandan, doğrulanmamış veya iyi incelenmemiş veri kümeleri güvenilmez sonuçların ortaya çıkma olasılığını artırdığından veri yığınlarına güvenmek riskleri de beraberinde getirmektedir. Üretken yapay zekânın, özellikle de büyük dil modellerinin (LLM'ler) ve bunların yapay zekâ asistanları şeklindeki uzantılarının, modelleri kötü niyetli amaçlarla kurcalayan saldırılara karşı özellikle savunmasız olduğu bilinmektedir.  En sinsi tehditlerden biri, düşmanların modelin davranışını değiştirmeye çalıştığı ve yanlış, önyargılı ve hatta zararlı çıktılar üretmesine neden olduğu veri (veya veri tabanı) zehirlenmesidir. Bu tür tahrifatların sonuçları uygulamalar arasında dalgalanarak güveni sarsabilir ve hem insanlar hem de kuruluşlar için sistemik riskler doğurabilir.

Veri zehirlenmesi türleri

Veri zehirleme saldırılarının çeşitli türleri vardır, örneğin:

"Veri enjeksiyonu: Saldırganlar, bir yapay zekâ modelinin davranışını değiştirmesini sağlamak için eğitim verilerine kötü amaçlı veri noktaları enjekte eder. Çevrimiçi kullanıcıların Tay Twitter botunu saldırgan tweetler atacak şekilde yavaşça değiştirmesi buna iyi bir örnektir.

İçeriden saldırılar: Normal içeriden tehditlerde olduğu gibi, çalışanlar erişimlerini kötüye kullanarak bir modelin eğitim setini değiştirebilir, davranışını değiştirmek için parça parça değiştirebilirler. İçeriden saldırılar özellikle sinsidir çünkü meşru erişimden faydalanırlar.

Tetikleyici enjeksiyonu: Bu saldırı, bir tetikleyici oluşturmak için yapay zekâ modelinin eğitim setine veri enjekte eder. Bu, saldırganların bir modelin güvenliğini aşmasına ve belirlenen tetikleyiciye göre durumlarda çıktısını manipüle etmesine olanak tanır. Bu saldırının tespit edilmesindeki zorluk, tetikleyicinin tespit edilmesinin zor olabilmesinin yanı sıra tetikleyici etkinleştirilene kadar tehdidin uykuda kalmasıdır.

Tedarik zinciri saldırısı: Bu saldırıların etkileri özellikle korkunç olabilir. Yapay zekâ modelleri genellikle üçüncü taraf bileşenleri kullandığından tedarik zinciri sürecinde ortaya çıkan güvenlik açıkları sonuçta modelin güvenliğini tehlikeye atabilir ve onu istismara açık hale getirebilir."

Yapay zekâ modelleri hem iş hem de tüketici sistemlerine derinlemesine gömüldükçe asistanlar veya verimlilik artırıcılar olarak hizmet verdikçe bu sistemleri hedef alan saldırılar önemli bir endişe kaynağı haline geliyor. Kurumsal yapay zekâ modelleri verileri üçüncü taraflarla paylaşmasa da çıktılarını iyileştirmek için şirket içi verileri silip süpürmeye devam ediyor. Bunu yapmak için hassas bilgi hazinesine erişmeleri gerekir, bu da onları yüksek değerli hedefler haline getirir. Genellikle hassas verilerle dolu olan kullanıcı komutlarını diğer taraflarla paylaşan tüketici modelleri için riskler daha da artmaktadır.

Makine öğrenimi ve yapay zekâ gelişimi nasıl güvence altına alınır?

ML/AI modelleri için önleyici stratejiler hem geliştiricilerin hem de kullanıcıların farkındalığını gerektirir. Temel stratejiler şunları içerir:

"Sürekli kontroller ve denetimler: Kötü niyetli manipülasyon veya önyargılı verilerin onları tehlikeye atmasını önlemek için AI/ML modellerini besleyen veri kümelerinin bütünlüğünü sürekli olarak kontrol etmek ve doğrulamak önemlidir.

Güvenliğe odaklanın: Yapay zekâ geliştiricilerinin kendileri de saldırganların hedefinde olabilir, bu nedenle proaktif önleme, erken tespit ve sistemik güvenlik kontrolleri ile saldırı yüzeyini en aza indirmeye yönelik önleme öncelikli bir yaklaşım sağlayabilecek bir güvenlik kurulumuna sahip olmak, güvenli geliştirme için olmazsa olmazdır.

Çekişmeli eğitim: Daha önce de belirtildiği gibi, modeller genellikle öğrenmelerini yönlendirmek için profesyoneller tarafından denetlenir. Aynı yaklaşım, modellere kötü niyetli ve geçerli veri noktaları arasındaki farkı öğretmek için de kullanılabilir ve sonuçta zehirleme saldırılarının engellenmesine yardımcı olur.

Sıfır güven ve erişim yönetimi: Hem içeriden hem de dışarıdan gelen tehditlere karşı savunmak için bir modelin temel verilerine yetkisiz erişimi izleyebilen bir güvenlik çözümü kullanın. Bu şekilde şüpheli davranışlar daha kolay tespit edilebilir ve önlenebilir. Ek olarak, sıfır güven ile hiç kimseye varsayılan olarak güvenilmez ve erişim izni verilmeden önce birden fazla doğrulama yapılması gerekir." (İLKHA)


Anahtar Kelimeler: yapay zekâya ne kadar güvenebiliriz?

Rusya’dan ABD’ye "petrol" tepkisi

Nijerya'da Ebola salgını alarmı

Danimarka: Grönland satılık değil

Tek katlı evde çıkan yangında maddi hasar meydana geldi

Cizre'de engelli araçlarının bakımı için tamirhane açıldı

Cumhurbaşkanı Erdoğan: Gazzeli kardeşlerimizin iradelerini gördükçe onlara olan saygımız daha da artmaktadır

Meteorolojiden Ege Denizi için fırtına uyarısı

HÜDA PAR’dan enflasyon açıklaması: Halkın ekonomik sıkıntıları her geçen gün derinleşiyor!

Otobüs ile kamyon çarpıştı: 11 yaralı

Haiti'de silahlı çete saldırısı: 50 ölü

Yapay zekâya ne kadar güvenebiliriz?

Kütahya'da uyuşturucu operasyonu: 4 tutuklama

Erken teşhis için kanser tarama testleri ihmal edilmemeli

Sapkın LGBT derneklerinin kapatılması için Van’da 30 binden fazla imza toplandı

Akkuyu NGS'de pompalama istasyonu devreye alınıyor

Gaziantep'te araması bulunan 851 kişi yakalandı

AB: Ticaret savaşlarının kazananı olmaz

Psikolojik dayanıklılık kanserle mücadelede önemli

Mısır Dışişleri Bakanı Bedir Abdulati yarın Türkiye’ye gelecek

Tunus'ta 4,9 büyüklüğünde deprem

Evde çıkan yangında 10 kişi dumandan etkilendi

Gazze'de şehit sayısı 47 bin 518'e yükseldi

Şanlıurfa Kent Konseyi Başkanı belli oldu

Şanlıurfa’da 26 yıl hapis cezası bulunan şahıs yakalandı

Malatya'da dağ keçisi avlayan şahsa 661 bin 883 TL para cezası verildi

Batman Belediyesinden ücretsiz sağlık hizmeti devam ediyor

Belçika'nın yeni başbakanı belli oldu

Okul önlerindeki yol çizgi çalışmaları tamamlandı

Kaldırım ve refüj timi sahada

Bil-Mek kurslarıyla kadınlar hem güçleniyor hem sosyalleşiyor

Yükleniyor

Haberi Sesli Oku

ŞEHİR HABERLERİ